ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity
نویسندگان
چکیده
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front-back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front-back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines.
منابع مشابه
Zonula Occludens (ZO)-1 and -2 Regulate Apical Cell Structure and the Zonula Adherens Cytoskeleton in Polarized Epithelia
The structure and function of both adherens (AJ) and tight junctions (TJ) are dependent on the cortical actin cytoskeleton. The Zonula Occludens (ZO)-1 and -2 proteins have contextdependent interactions with both junction types and bind directly to F-actin and other cytoskeletal proteins, suggesting they might regulate cytoskeletal activity at cell junctions. To address this hypothesis, we gene...
متن کاملShroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure
Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock), to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP) path...
متن کاملMYBPH, a transcriptional target of TTF-1, inhibits ROCK1, and reduces cell motility and metastasis.
Cell migration driven by actomyosin filament assembly is a critical step in tumour invasion and metastasis. Herein, we report identification of myosin binding protein H (MYBPH) as a transcriptional target of TTF-1 (also known as NKX2-1 and TITF1), a master regulator of lung development that also plays a role as a lineage-survival oncogene in lung adenocarcinoma development. MYBPH inhibited asse...
متن کاملROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens
Rho kinases (ROCK1 and ROCK2) function downstream of the small GTPase RhoA to drive actomyosin cytoskeletal remodeling. It has often been believed that ROCK1 and ROCK2 may be functionally redundant, as they share a highly conserved kinase domain. However, in this study, we report differential functional effects for these ROCKs at the epithelial zonula adherens (ZA). Using specific siRNA, we fou...
متن کاملZonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia
The structure and function of both adherens (AJ) and tight (TJ) junctions are dependent on the cortical actin cytoskeleton. The zonula occludens (ZO)-1 and -2 proteins have context-dependent interactions with both junction types and bind directly to F-actin and other cytoskeletal proteins, suggesting ZO-1 and -2 might regulate cytoskeletal activity at cell junctions. To address this hypothesis,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 210 شماره
صفحات -
تاریخ انتشار 2015